Quiz 1
 Chemical Engineering Thermodynamics
 January 16, 2015

1)
9. Can an ideal gas condense? Can real fluids that follow the ideal gas law condense?
2)

1.13 A gas stream entering an absorber is $20 \mathrm{~mol} \% \mathrm{CO}_{2}$ and $80 \mathrm{~mol} \%$ air. The flowrate is $1 \mathrm{~m}^{3} / \mathrm{min}$ at 1 bar and 360 K . When the gas stream exits the absorber, 98% of the incoming CO_{2} has been absorbed into a flowing liquid amine stream.
(a) What are the gas stream mass flowrates on the inlet and outlets in $\mathrm{g} / \mathrm{min}$?
(b) What is the volumetric flowrate on the gas outlet of the absorber if the stream is at 320 K and 1 bar?

Molar mass: $\mathrm{CO} 2=44.0 \mathrm{~g} / \mathrm{mole}, \mathrm{Air}=28.8 \mathrm{~g} / \mathrm{mole}, \mathrm{R}=8.31 \mathrm{e}-5 \mathrm{bar} \mathrm{m}^{3} /(\mathrm{K} \mathrm{mole})$
3)
1.18 Two kg of water exist initially as a vapor and liquid at $90^{\circ} \mathrm{C}$ in a rigid container of volume $2.42 \mathrm{~m}^{3}$.
(a) At what pressure is the system?
(b) What is the quality of the system?
(c) The temperature of the container is raised to $100^{\circ} \mathrm{C}$. What is the quality of the system, and what is the pressure? What are ΔH and ΔU at this point relative to the initial state?
(d) As the temperature is increased, at what temperature and pressure does the container contain only saturated vapor? What is ΔH and ΔU at this point relative to the initial state?
(e) Make a qualitative sketch of parts (a) through (d) on a $P-V$ diagram, showing the phase envelope.

Answers Quiz 1 Chemical Engineering Thermodynamics January 16, 2015

1)

9. Can an ideal gas condense? Can real fluids that follow the ideal gas law condense?

An ideal gas cannot condense since there are no attractive forces between the gas molecules or atoms. A real gas that follows the ideal gas law can condense since it only has ideal behavior over a limited range of temperature and pressure. At some low temperature or high pressure the attractive potential between molecules will be stronger than $3 \mathrm{kT} / 2$ and the molecules will condense.

2)

1.13 A gas stream entering an absorber is $20 \mathrm{~mol} \% \mathrm{CO}_{2}$ and $80 \mathrm{~mol} \%$ air. The flowrate is $1 \mathrm{~m}^{3} / \mathrm{min}$ at 1 bar and 360 K . When the gas stream exits the absorber, 98% of the incoming CO_{2} has been absorbed into a flowing liquid amine stream.
(a) What are the gas stream mass flowrates on the inlet and outlets in $\mathrm{g} / \mathrm{min}$?
(b) What is the volumetric flowrate on the gas outlet of the absorber if the stream is at 320 K and 1 bar?
a) $\mathrm{n}=\mathrm{PV} / \mathrm{RT}=1 \mathrm{bar} * 1 \mathrm{~m}^{3} / \mathrm{min} /\left(8.31 \mathrm{e}-5 \mathrm{bar} \mathrm{m}^{3} /(\mathrm{K}\right.$ mole $\left.) 360 \mathrm{~K}\right)=33.4 \mathrm{~mole} / \mathrm{min}$ with $20 \% \mathrm{CO}_{2}=6.7 \mathrm{~mole} / \mathrm{min}$ and $26.7 \mathrm{~mole} / \mathrm{min}$ air.
In exit stream you have $0.02 * 6.7 \mathrm{~mole} / \mathrm{min} \mathrm{CO}_{2}=0.1 \mathrm{~mole} / \mathrm{min}$ and $26.7 \mathrm{~mole} / \mathrm{min}$ air. CO_{2} molecular weight is $44.0 \mathrm{~g} / \mathrm{mole}$ and air has an average molecular weight of 28.8 $\mathrm{g} / \mathrm{mole}$. So mass rate of the incoming stream is $6.7 \mathrm{~mole} / \mathrm{min} * 44.0 \mathrm{~g} / \mathrm{mole}+26.7$ $\mathrm{mole} / \mathrm{min} * 28.8 \mathrm{~g} / \mathrm{mole}=1.06 \mathrm{~kg} / \mathrm{min}$.
Exit stream has $0.1 \mathrm{~mole} / \mathrm{min} * 44.0 \mathrm{~g} / \mathrm{mole}+26.7 \mathrm{~mole} / \mathrm{min} * 28.8 \mathrm{~g} / \mathrm{mole}=0.77$ $\mathrm{kg} /$ min.
b) $\mathrm{dV} / \mathrm{dt}=26.8 \mathrm{moles} / \mathrm{min} 8.31 \mathrm{e}-5 \mathrm{bar} \mathrm{m}^{3} /(\mathrm{K}$ mole $) 320 \mathrm{~K} / 1 \mathrm{bar}=0.713 \mathrm{~m}^{3} / \mathrm{min}$
3)
1.18 Two kg of water exist initially as a vapor and liquid at $90^{\circ} \mathrm{C}$ in a rigid container of volume $2.42 \mathrm{~m}^{3}$.
(a) At what pressure is the system?
(b) What is the quality of the system?
(c) The temperature of the container is raised to $100^{\circ} \mathrm{C}$. What is the quality of the system, and what is the pressure? What are ΔH and $\Delta \underline{U}$ at this point relative to the initial state?
(d) As the temperature is increased, at what temperature and pressure does the container contain only saturated vapor? What is ΔH and ΔU at this point relative to the initial state?
(e) Make a qualitative sketch of parts (a) through (d) on a $P-V$ diagram, showing the phase envelope.
a) 0.070 MPa from the Saturation Temperature table.
b) $\mathrm{V}=2.42 / 2=1.21 \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{V}_{\mathrm{L}}=.0010 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{V} \mathrm{V}_{\mathrm{V}}=2.36 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{q}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{L}}\right) /\left(\mathrm{V}_{\mathrm{V}}-\right.$ $\left.\mathrm{V}_{\mathrm{L}}\right)=1.21 / 2.36=0.51$
c) At $100^{\circ} \mathrm{C}$ the pressure is 0.101 MPa from Saturation Temperature table. $\mathrm{V}_{\mathrm{L}}=.001 \mathrm{~m}^{3} / \mathrm{kg}$ $\mathrm{V}_{\mathrm{V}}=1.67 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{q}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{L}}\right) /\left(\mathrm{V}_{\mathrm{V}}-\mathrm{V}_{\mathrm{L}}\right)=1.21 / 1.67=0.72$

At $100^{\circ} \mathrm{C} \mathrm{H}_{\mathrm{L}}=419, \Delta \mathrm{H}=2260 \mathrm{~kJ} / \mathrm{kg}$ so $\mathrm{H}=419+0.72 * 2260 \mathrm{~kJ} / \mathrm{kg}=2050 \mathrm{~kJ} / \mathrm{kg}$ At $80^{\circ} \mathrm{CH}_{\mathrm{L}}=335, \Delta \mathrm{H}=2310 \mathrm{~kJ} / \mathrm{kg}$ so $\mathrm{H}=335+0.51 * 2310 \mathrm{~kJ} / \mathrm{kg}=1510 \mathrm{~kJ} / \mathrm{kg}$ So, $\Delta \mathrm{H}=1510 \mathrm{~kJ} / \mathrm{kg}-2050 \mathrm{~kJ} / \mathrm{kg}=-540 \mathrm{~kJ} / \mathrm{kg}$

At $100^{\circ} \mathrm{C}_{\mathrm{L}}=419, \Delta \mathrm{U}=2087 \mathrm{~kJ} / \mathrm{kg}$ so $\mathrm{U}=419+0.72 * 2087 \mathrm{~kJ} / \mathrm{kg}=1920 \mathrm{~kJ} / \mathrm{kg}$ At $80^{\circ} \mathrm{C} \mathrm{U}_{\mathrm{L}}=335, \Delta \mathrm{U}=2147 \mathrm{~kJ} / \mathrm{kg}$ so $\mathrm{U}=335+0.51 * 2147 \mathrm{~kJ} / \mathrm{kg}=1430 \mathrm{~kJ} / \mathrm{kg}$ So, $\Delta \mathrm{U}=1430 \mathrm{~kJ} / \mathrm{kg}-1920 \mathrm{~kJ} / \mathrm{kg}=-490 \mathrm{~kJ} / \mathrm{kg}$
d) From the saturated table the temperature where the specific volume for the vapor phase is $1.21 \mathrm{~m}^{3} / \mathrm{kg}$ is $110^{\circ} \mathrm{C}$.
At that point the liquid enthalpy is $461 \mathrm{~kJ} / \mathrm{kg}$ and the liquid internal energy is also 461 $\mathrm{kJ} / \mathrm{kg}$. so $\Delta \mathrm{H}=461-1510 \mathrm{~kJ} / \mathrm{kg}=-1049 \mathrm{~kJ} / \mathrm{kg}$ and $\Delta \mathrm{U}=461-1430 \mathrm{~kJ} / \mathrm{kg}=-969 \mathrm{~kJ} / \mathrm{kg}$.
e)

